
(U TEXAS UNI AT AUSTN INS FOR COMPUTINO SCIENCE AND

OMPUER A.
RSO YERET

AL JAN N 8 ICCACMP-35

UNCLASS lFED NOA 004-8N-K-0634 / 121 NE-hhhimh
IhhhhhhhhhlLm

1362

m

MICROCOPY RESOLUTION TEST CHART
MAYIOISAI tflAu 0 SVTAbS0 -953 -A

.0 .. MNM

IECCUIYY CLASSIFICATION OF THIS PAGE (Whlen bfle. Entered)REPORT OCUMENTATION PAGE DFO OPEIGFR
:- . REPORT NUMBER]2 OVY ACCEUION NO. 3." RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S TYPE OF REPORT & PERIOO COVEREO

PROOF-CHECKING, THEOREM PROVING, AND PROGRAM Technical
VERIFICATION S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) I. CONTRACT OR GRANT NUMBER(@)

Robert S. Boyer & J Strother Moore MCS-8202943

N00014-81-K-0634
S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

AREA & WORK UNIT NUMBERSInstitute for Computing Science & Computer
Applications, The University of Texas at Austin, NR 049-500
Main Building 2100, Austin, Texas 78712

I . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Software Systems Science Office of Naval Research January, 1983

gational Science Found. 800 N. Quincy St -. NUMBER OF PAGES
Washington, DC 20550 Arlington, VA 22217 23 pages

14. MONITORING AGENCY NAmE & ADDRESS(if dilferent from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
IS. DECL ASSI FIC ATION/DOWN GRADING

SCHEDULE

16 DISTRIBUTION STATEMENT ,of thi Report)

Reproduction in whole or in part is permitted for any purposes
of the United States government. Th1i documont hs been pP Oved

for public release ant bic; ti

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Repot)

18. SUPPLEMENTARY NOTES DI

I9. KEY WORDS (Continue on revere ide. Itel nece ,y and Identify by block .. ber) -b e) 19 3

A
20. ABSTRACT (Continue an reverse ade It neceeery and Idenify by block mmber) This article consists of

:hree parts: a tutorial introduction to a computer program that proves theorems)y induction; a brief description of recent applications of that theorem-prover;
nd a discussion of several nontechnical aspects of the problem of building

LU utomatic theorem-provers. The theorem-prover described has proved such theorems
s the uniqueness of prime factorizations, Fermat's theorem, and the recursive

L . nsolvability of the halting problem. The article is aimed at those who know
othing about automatic theorem-proving but would like a glimpse of one such sys-

D D I ,F
1

3 1473 EDITION OF I NOV 65 IS osSto.TZY
S/N 0102-LF-014-6601 .nc . ifind .

IRCUI RIY CLASUIlCATION OF THIS PAGE R M INIM

83 07 6 109
lg

1. Introduction

9 This article consists of three parts: a tutorial introduction to a computer program

that proves theorems by induction; a brief description of recent applications of that

theorem-prover; and a discussion of several nontechnical aspects of the problem of build-

ing automatic theorem-provers. The theorem-prover described has proved such theorems

as the uniqueness of prime factorizations, Fermat's theorem, and the recursive unsol-

vability of the halting problem.

The article is aimed at those who know nothing about automatic theorem-proving but

* would like a glimpse of one such system. -This article definitely does not provide a

balanced view of all of automatic theorem-proving, the literature of which is already

rather large and technic 40 Nor do we describe the details of our theorem proving sys-

tem, but they can be found in the books, articles, and technical reports that we

reference.

In arw opinion, the limiting factor in progress in automatic theorem-proving is the

quality of the mathematicians who are attempting to build such systems. -Wtrencourage

good mathematicians to work in the field.

I~ood places to start on the technical literature are (17) and (3).

I_

2

2. Tutorial

2.1. From Proof-Checking to Fully Automatic Proof

A formal proof is a finite sequence of formulas each member of which is either an

axiom or the result of applying a rule of inference to previous members of the sequence.

Typic si rules of inference are modus ponen and the substitution of equals for equals. A

grammar for formulas, a collection of axioms, and a collection of rules of inference

together def ine a logical theory

g For the usual theories of mathematics, e.g. set theory or number theory, it is a rela-

tively modest exercise to write a program called a proof checker that will check, in a

reasonable amount of time, whether a given sequence of formulas is a proof. For some

theories, e.g. the propositional calculus, it is possible to write a computer program called

a decision procedure that will determine whether any given formula has a proof in the

theory. But for the usual theories of mathematics, it is theoretically impossible to write

a decision procedure. On the other hand, it is theoretically possible to write a

semi-decision procedure, that is, a program th et will find a proof for any given formula if

there is one, but may run forever is there is no proof. For example, one can write the

practically useless program that will systematically generate all the proofs in a theory.

The challenge of automatic theorem-proving is to write computer programs that find

proofs in a reasonable or practical amount of time.

One of the main techniques used to meet this challenge is the invention of heuristic

proof techniques - algorithms that analyze the problem at hand and pursue sound and

plausible lines of reasoning. Unlike decision procedures, heuristics are not guaranteed to

find a proof if one exists. Because the ordinary kinds of mathematical theories, such as

3

number theory and set theory, are undecidable, heuristics will inevitably be a part of any

completely automatic theorem-proving system.

While automatic theorem-provers have occasionally contributed to the proofs of new

results in mathematics 2 , the kinds of proofs discovered by today's programs would be

considered trivial by most mathematicians. But an automatic theorem-prover need not

be a first rate mathematician to be useful It would be a major accomplishment and h ae

far-reaching practical consequences to produce an automatic theorem-proving program

that could follow and detect errors in mathematical proofs described at the level of

graduate mathematics textbooks. We will explain this remark when we discuss the ap-

plications of our theorem-prover.

2.2. Our Automatic Theorem-Prover

Our work on automatic theorem-proving can be regarded as an attempt to construct a

high-level proof checker for elementary number theory and recursive function theory.

The basic axioms of our theory are those of Peano arithmetic, plus similar axioms defin-

ing ordered pairs. The Peano axioms characterize the natural numbers as follows. 0 is a

natural number; if i is a natural number, so is the "successor" of i, usually written s(i); s(i)

is never 0; s(i) is s(j) iff i is j. In addition, we are provided with the principle of math-

ematical induction as a rule of inference: To prove that any formula P(n) is a theorem

for all natural numbers n, it is sufficient to prove P(O) md to prove that for all natural

numbers i, P(i implies P(s(i)).

2 Cf. the papers of Wos and Winker and of Chou in this volume.

i4

Starting from such concepts the user of our system introduces such recursive defini-

tions as "sum", "product", "remainder", etc., and uses the theorem-prover to prove

theorems about them. Among the theorems proved by our machine are:

- the existence and uniqueness of prime factorizations (4)

- Fermat's theorem: M(PD 1) = 1 (mod p) if p is prime and does not divide M (7)

- the existence of nonprimitive recursive functions

- the soundness and completeness of a propositional calculus decision procedure

similar to the Wang algorithm (4)S
- the recursive unsolvability of the halting problem (8)

To get our system to find proofs for these theorems, the user of the system suggested

intermediate steps for the proofs. But the total amount of assistance given by the user

was approximately the text that one might find in a graduate level exposition of these

theorems.

2.3. Three Heuristics used by Our Program

When, in searching for a proof, does a mathematician decide to make an argument by

induction, and how does he decide which formula "P" to do induction on? Answers to this

question are likely to involve a heuristic guess. Furthermore, therea re many variants on

the induction principle some of which may be more appropriate for a given problem th m

others, e.g., course-of-v dues, simultaneous induction on several variables, induction up

to certain bounds. The major emphasis of our work has been the development of a

heuristic for mech anizing mathematical induction.

5

The heuristic, which takes several pages to describe fully (4), considers the definitions

of the recursive functions that are mentioned in the conjecture and selects an induction

argument that is the "dual"' of some combination of the definitions. We illustrate our in-

duction heuristic in the next section of this paper.

In addition, our program contains many other heuristics. The most complex select in-

stances of axioms, definitions, and previously proved lemmas to use in a proof. For ex-

ample, suppose some function symbol f is defined recursively. When does one decide to

replace a "call" of f by the definition of f? The main heuristic our program uses is to

check whether the recursive calls of f that would be introduced we already in the con-

jecture at hand. As will be illustrated below, hypotheses about such recursive calls are

frequently provided by the induction heuristic.

A third important heuristic in our theorem-proving system is generalization,

i.e. considering a harder problem than the one at hand. Generalization seems to be

necessary in order to get certain conjectures proved inductively, but generalization is a

very danigerous business. The most common form of generalization that our system uses

is to "throw away" an induction hypothesis once it has been "fused".

2,4. T** Examples

We will now illustrate our induction, expansion, and generalization heuristics by

describing our system's proofs of two theorems from elementary number theory: the as-

sociativity of multipliction and Fermat's theorem.

S The addition function may be defined recursively as follows:

6

0+y = y

s(x)+y s(x+y).

Our program admits such equations as new axioms only after proving that one and

only one function satisfies them.

We define multiplication in terms of addition:

O*y = 0

s(x)*y = y+(x*y).

Suppose the user of our program now submits to the system the conjecture: (x*y)*z -

x*(y*z). How does the theorem-prover proceed?
I

Our program decides to prove this by induction, after ruling out such possible "moves"

as considering the eases and expanding some of the function definitions. How does it

choose which induction to try? Consider for a moment a simple induction on x. Let p be

the conjecture we are trying to prove. The base case is formed by replacing all the x's in

p by 0. The induction step is an implication from the induction hypothesis to the

induction, conclusion. The induction hypothesis is p. The induction conclusion is formed

from p by replacing all the x's by s(x). Thus, the x*y in the induction hypothesis becomes

s(x)*y in the induction conclusion. But by the recursive definition of "*", s(x)*y is equal

to y+xy. We say that x*y has "stepped through" the induction on x bee muse, after

simplification, it appears in both the induction hypothesis and the induction conclusion.

Given the recursive definition of "*", the occurrence of x*y in the conjecture we are

trying to prove suggests a simple induction on x. The occurrence of the term y*z in the

conjecture suggests a simple induction on y, but another term in the conjecture, namely

xmy, does not step through an induction on y. By such considerations our induction heurie-

i 4

I. .. 7

tic elects to induct on x.

The base case is trivial: both sides reduce to 0 by the definition of "*". The induction

step is more interesting. The hypothesis is

hyp: (x*y)*z = x*(y*z)

and the conclusion is

conc: (s(x)*y)*z = s(x)*(y*z).

Our program attacks this problem first by simplifying the terms appearing in it. Con-

* sider the term s(x)*y in the conclusion. By definition, this term is equal to y+(x*y).

Since x*y already occurs in the conjecture at hand, namely, in the hypothesis, our

program elects to replace s(x)*y by y+(x*y). By such expansions the program reduces the

induction conclusion to

conc2: (y+(x*y))*z = (y*z)+(x*(y*z)).

Since further expansion of any term produces terms not already in the conjecture, our

program stops expanding definitions at this point.

Next, the program tries to :-e its induction hypothesis, hyp. The right hand side of

hyp, (x*(y*z)), has stepped through the induction and emerged inside the right hmd side

of the simplified conclusion, conc2. This permits the program to use its induction

hypothesis by substituting the left hand side for the right in conc2. The result is:

conc3: (y+(x'y))*z = (y'z)+((xey)*z).

However, although its goal is to prove that hyp implies conc3, our program adopts the

* S 8

I!

stronger goal of proving conc3, without any hypothesis, on the grounds th at the induction

hypothesis has been used and should not contaminate future goals. In addition, because

the term x*y also stepped through the induction and now appears on both sides of the

equality, the program decides to adopt an even stronger generalization, obtained by

replacing x*y in conc3 by the new variable w:

conc4: (y+w)*z = (y*z)+(w*z).

Observe that this sequence of heuristics has led the program to "guess" that multiplica-

tion distributes over addition. The program proves this by induction and further expan-

sion. Thus, the system proves the associativity of multiplication without any guidance

from the user. It takes our program about 10 seconds to produce the proof described

above.

Once the theorem-prover proves a lemma it remembers it for future use. Fnr ex-

ample, the associativity of multiplication would be used to reassociate any instance of

(x*y)*z to the corresponding instance of x*(y*z). By having the theorem-prover prove

key lemmas the user can lead it to the proofs of complicated theorems.

Below we exhibit the proof of Fermat's theorem. Concepts used in the theorem and

proof are introduced with recursive definitions, just as we introduced "+" and "*" above.

Each English sentence below corresponds to one formula (lemma) typed by the user and

proved by the system. Several of the lines require induction to prove. The proof below

was constructed after the system had proved many of the theorems in ch pter V of Hardy

and Wright's An Introduction to the Thory of Numbers (15).

Fermat's Theorem: If p is prime and does not divide M, MPrI mod p = 1.

17t

9

Proof. Let S(n,M,p) be the sequence (n*M mod p, (n-1)*M mod p, ... , I*M

mod p).

In the text below we make the convention that p is a prime that does not

divide M.

The product over S(n,M,p) mod p is equal to n!*Mn mod p.

Observe that if i is strictly less than j and j is strictly less than p, then j*M
mod p is not a member of S(i,M,p) (Hint: induct on i). Hence, if n is strictly less

than p, then no element of S(n,M,p) occurs twice. Furthermore, each element

of S(n,M,p) is positive, each is less than or equal to p-1, and there are n ele-

ments.
I

Thus, from the Pigeon Hole Principle we have that the product over

S(p-1,M,p) is (p-i)!. But we have that the product over S(p-l,M,p) mod p is

(P-1)!*MP-1 mod p. Hence, Fermat's theorem. Q.E.D.

3. Applications

In this section we describe some of the applications of our theorem-prover. To do so

we must first elaborate our remark above that the production of a good "high level proof

checker" would have far-reaching practical significance.

Computer programs may be regarded as formal mathematical objects whose correct-

ness can be proved in Just the sense that theorems are proved. A "bug" in a computer

program represents either (a) the failure of the programmer to prove that the program

does what it is supposed to do or (b) the failure of someone, be it the programmer or his

employer, to specify clearly what the orogram was supposed to do. In principle, bugs of

the first variety can be .*at by requiring that program proofs be mechamically

checked. Nor is this a mere theoretical possibility. Widespread research into p m

10

Sverifiation suggests tht the cost of mehaniclly checking the proofs of programs is

currently somewhere between 2 and 30 times as great as the normal development costs.

To our knowledge, the largest program mechanically verified to date consists of 4,211

lines of executable high level code (21). The major, perhaps the only serious, difficulty in

further reducing the cost is the development of better high-level proof-checkers.

There are two traditional types of program verification: Floyd-style (13) and

McCarthy-style (18). Our theorem-prover is used in both types of program verification.

The Floyd-style, which has its roots in the classic Gioldstine and von Neumann

* reports (23), handles the usual kind of programming language, of which FORTRAN is per-

h aps the best example. In this style of verification, certain points in the flowchart

representation of a program are annotated with mathematical assertions about what is

"always true" about the program variables and the input whenever "control" reaches such

points. By exploring all possible paths from one assertion to the next and analyzing the

effects of intervening program statements it is possible to reduce the correctness of the

program to the problem of proving certain derived formulas called verification

conditions. Furthermore, this reduction can be done mechanically once the program has

been properly annotated with assertions. The computer program that produces the

theorems to be proved from the annotated program is called a verification condition

cenerator.

We have written a verification condition generator for a subset of ANSI FORTRAN 66

and 77 and we use our theorem-prover to prove the resulting verification conditions. We

make the following claim about our verifier

A .,s

if a FORTRAN subprogram is accepted and proved by our system and the

program can be loaded onto a FORTRAN processor that meets the ANSI

specification of FORTRAN (22, 1) and certain parameterized constraints on the

accuracy of arithmetic, then any invocation of the program in an environment

satisfying the input condition of the program will terminate without run time

errors and will produce an environment satisfying the output condition of the

program.

Among the FORTRAN programs we have proved correct mechanically are a fast string

searchinr algorithm (5), an integer square root algorithm bleed on Newton's method, and

a linear time majority vote algorithm (9). However, merely browsing through our

description of the verification condition generator for FORTRAN (5) - where we

describe how to handle COMMON statements, second level definition, aliasing, undefined

variables, and other arcane features - is enough to convince most people that it at best

awkward to verify programs written in von Neumann style programming languages.

The McCarthy-style of program verification eschews programming languages such as

FORTRAN and instead takes as the programming language a mathematical language,

i.e. one in which axioms and conjectures can be stated. For example, McCarthy's lan-

guage LISP (19) defines programs using lambda abstraction and recursion equations. A

more recent language by Backus, the author of FORTRAN, (2) is based upon combinators

rather than lambda abstraction. The increasingly popular logic programming languages

(16) are based on the first order predicate calculus.

It is our experience that most programs are much easier to verify if they are written

in such programming languages, for several reasons:

- It is not necessary for the user of the verification system to shift constantly

12

from one language to the another, i.e. from the programming language to the

logical language.

-The tedious problems of storage allocation and deallocation are handled

transparently by logical languages, but must be managed explicitly by

FORTRAN style languages.

Among the McCarthy-style program verification problems that our automatic

theorem-proving system has solved we:

- The correctness of a simple compiler (4) and parser (14)
£

- The soundness of an arithmetic simplifier (6), which is actually part of our

theorem-prover

- The invertibility of the RSA public key encryption algorithm (7), which re-

quires proving that if p and q are distinct primes, n is p*q, M is strictly less

than n, and e and d are multiplicative inverses in the ring of integers modulo

(p-l)*(q-1) then (Me mod n)d mod n = M.

- The termination, over the integers, of the Takeuchi function (20):

Tak(x,y,z) = if x is less than or equal to y, then y

else Tak(Tak(x-1, y, z),

Tak(y-1, z, x),
Tak(z-1, x, y)).

The later is a nontrivial theorem that we think would tax any mathematician for more

than a few minutes.

Beyond these two traditional kinds of program verification, there are several new

kinds of program verification that are emerging and to which our theorem-prover has

* 13

been applied.

- The mechanical verification of concurrent, or parallel programs, has received
much less attention than it deserves. A major reason, perhaps, is that new,
improved methods for specifying and proving such programs by hand are being
developed almost daily. Included here is the verification of networks, as opr-
posed to systems resident on single computers. One mechanization of net-
work verification has been based upon our theorem-prover (11).

- The mechauical or even hand verification of real-time programs has been al-
most ignored. We have made a minor investigation in (10) where we use our
theorem-prover to prove that a simple program keeps a vehicle "on course" in
a varying cross wind. A major problem in real time control verification is the

* specification of the real world with which such programs are supposed to in-
teract. In addition, timing and interrupt handling are major problems.

- The verification of specifications, i.e., proving properties about program
specifications rather theni about the programs themselves, has received a
surprising amount of attention. The major property checked for is a certain
type of "security". The federal government has issued RFQs for major sys-
tems with a requirement that the specifications be mechanically checked for
security. One such checker, which uses our theorem-prover, is
Feiertag's (12).

4. Nontechnical Issues

4.1. Developing Heuristics

Our experience with developing heuristics has convinced us of three doctrines.

First, it is easy to build in a proof of any given theorem. To help us avoid this we do

not permit ourselves to use in our code for the theorem-prover the name of any logical

function except the primitives of our theory. Thus, in a certain sense our por~am be-

14

haves the same way whether the user names his factorial function "!" or "FACT".

Nevertheless, it is possible to cheat and build in subroutines that recognize when the user

has defined certain functions, without ever mentioning them by name in your code. In

the end, one is forced to evaluate an automatic theorem-prover by how good it is when

applied to "new" problems. To this end we make it a habit not to ch ange our theorem-

prover's heuristics to solve a new problem, but rather to solve the problem with the old

version of the system (thereby getting valuable information on how good that arrange-

ment of heuristics is). Once we have successfully tackled a new problem we consider

how we might have changed the system to have made that problem easier.

Second, it is much easier to invent heuristics than to evaluate them. Generally,

heuristics are motivated by a few examples. What is not so easy to see is the effect a

candidate heuristic will have on other examples. In the development of our system, we

have adipted the discipline of making approximately sure that our system can do

whatever it used to be able to do when we add or improve a heuristic by the brute force,

and expensive, technique of running the new system on all the old problems. With this

filter, we have thrown out far more heuristics than we have retained.

Third, combining heuristics with other heuristics or decision procedures cannot be

usefully accomplished by merely pasting them together. On numerous occasions, we have

been asked, "Why don't you incorporate into your system the decision procedures of so

and so?" The answer is that adding new proof techniques is unlikely to be profitable un-

less the new techniques are tightly interwoven with the old. For example, we have

recently added decision procedures for both "linear arithmetic" and "complete equality".

In both cases, we first tried adding "black boxes" to our system that contained the code

for these decision procedures, with the idea that we would periodically pass the current

15

conjecture to those boxes. We found this approach practically useless because it almost

never happened that our current conjecture was merely a consequence of linear arith-

metic or pure equality. Instead, we found it necessary to interweave code for the deci-

sion procedures with the already very complicated code that heuristically selects in-

stances of previously proved theorems because equality and arithmetic reasoning are so

often necessary to relieve the hypotheses of lemmas.

4.2. System Engineering

There is a surprisingly large amount of work to building an automatic theorem-

proving system besides developing and coding the basic mathematical techniques for

finding proofs. This extra work is largely due to the fact that humans will be using the

system. Even if the number of serious users of the system is small (in our case it is about

15), it turns out to be cheaper to devote a lot of time to issues such as the following than

to ignore them.

4.2.1. Output

Understanding what an automatic theorem-prover has to say can be taxing, especially

if heuristics are involved, becauise one not only wants to know what the system has done

but "why" it has done it. Perhaps 20% of our system is devoted to describing what is

going on and why. We have found it worth the time to make the output appear in literate

English prose and good typographic style. The output routine is sufficiently complex to

merit a special programming language. The code for reporting what the system does is

necessarily intertwined with the code for deciding what to do. Changing the heuristics

can force major changes to the output routines.

16

4.2.2. Error-Recovery

Bee ause to err is human, we allow the user to recover from "mistakes". The develop-

ment of a complex proof with perhaps hundreds of lemmas seems inevitably to result in

false starts. It is amazingly difficult to type perfectly accurate definitions and

theorems. But implementing techniques for "backing up" and editing takes more work

that it might seem.

4.2.3. State Saving

The development of a large proof frequently requires many working days. It is neces-

sary to be able to save the logical state of the system - e.g., the axioms, definitions, and

proved lemmas - so that the work of one day can be continued another. Such a data

base constitutes a "library" and much time can be spent designing and implementing such

a library facility and (especially) building up libraries of useful lemmas.

4.2.4. Reliability

In writing a one-off experimental automatic theorem-proving system, there is a great

temptation to cut corners by taking such liberties as not checking the input syntax, not

catching arithmetic overflow, or not carefully defining exactly which mathematical

theory one is working with. We have found it desirable but expensive to do our best to

make our system "impenetrable". Because our system has not been mechanically

verified, it probably has errors. But there are no errors or holes that we know of. We

used to offer to Jump off the Golden Gate Bridge if someone found an error in our system

that would cause it to "prove" a not-theorem. However, when the first such bug was

found by Topher Cooper of Digital Equipment Corporation, we merely awarded him the

17

first Golden Gate Bridge award and moved to Texas.3 He is the only recipient to date.

4.2.5. Tools

It is perhaps an occupational hazard of researchers in Artificial Intelligence that they

become involved in "tool building." That is, instead of merely getting on with the job of

writing programs, they spend a lot of time writing programs to help them write

programs. We have suffered from this hazard. Among the "tools" implemented have

been several text editors, an elaborate syntax checker for our own code that catches our

common programming errors, and devices for overcoming the 1 megabyte memory ad-

dress space limitation of Interlisp-10.

I
4.2.6. Computers

During the last 15 years, obtaining a decent computing environment for doing

research on automatic theorem-proving has usually meant getting access to an expensive

machine with a large address space like a Digital Equipment Corporation 2060, costing

around $1,000,000. This major problem is fortunately disappearing rapidly, due to the

emergence of LISP machines, priced well under $100,000.

5. Acknowledgments

Our work began in 1971 in Edinburgh, Scotland, under Science Research Council sup-

port to Bernard Meltzer of the Metamathematics Unit of the University of Edinburgh.

At SRI and at the University of Texas our continuing benefactors have been Thomas

3 A subroutine for calculating the value of a primitive function on constants contained

a bug that caused it to deliver the wrong answer on certain constants axiomatized by the

user.

Keenan of NSF and Robert Grafton and Marvin Denicoff of ONR, to whom we are deeply

grateful.

J

19

REFERENCES

1. American National Standards Institute, Inc. American National Standard Program-

ming Language FORTRAN. Tech. Rept. ANSI X3.9-1978, American National Standards

Institute, Inc., 1430 Broadway, N.Y. 10018, April, 1978.

2. J. Backus. "Can Programming Be Liberated from the von Neumann Style? A Func-

tional Style and Its Algebra of Programs." Comm. ACM 21 (August 1978), 616-641.

3. W. W. Bledsoe. "Non-resolution Theorem Proving." Artificial Intelligence 9 (1977),

1-36.I
4. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York,

1979.

5. R. S. Boyer and J S. Moore. A Verification Condition Generator for FORTRAN. In
The Correctness Problem in Computer Science, R. S. Boyer and J S. Moore, Eds.,

Academic Press, London, 1981.

6. R. S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and Using Them

Efficiently as New Proof Procedures. In The Correctness Problem in Computer Science,

R. S. Boyer and J S. Moore, Eds., Academic Press, London, 1981.

7. R. S. Boyer and J S. Moore. Proof Checking the RSA Public Key Encryption Al-

gorithm. Technical Report ICSCA-CMP-33, Institute for Computing Science and Com-

puter Applications, University of Texas at Austin, 1982. (Submitted for publication.)

S. R. S. Boyer and J S. Moore. A Mechanical Proof of the Unsolvability of the Halting

Problem. Technical Report ICSA-CMP-28, University of Texas at Austin, 1962.

(Submitted for publication.)

9. R. S. Boyer and J S. Moore. MJRTY - A Fast Majority Vote Algorithm. Teehnical

, Report ICSCA-CMP-32, Institute for Computing Science and Computer Applications,

University of Texas at Austin, 1962. (Submitted for publication.)

20

10. R. S. Boyer, M. W. Green and J S. Moore. The Use of a Formal Simulator to Verify a

Simple Real Time Control Program. Technical Report ICSA-CMP-29, University of

Texas at Austin, 1982. (Submitted for publication.)

11. Benedetto Lorenzo Di Vito. Verification of Communicaions Protcols and Abstract

Process Models. PhD Thesis ICSCA-CMP-25, Institute for Computing Science and Com-

puter Applications, University of Texas at Austin, 1982.

12. Richard J. Feiertag. A Technique for Proving Specifications are Multilevel Secure.
Technical Report CSL-109, SRI International, 1981.

13. R. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of Computer

Science, Proceedings of Symposia in Applied Mathematics, American Mathematical
Society, Providence, Rhode Island, 1967, pp. 19-32.

14. P. Y. Gloess. An Experiment with the Boyer-Moore Theorem Prover: A Proof of the
Correctness of a Simple Parser of Expressions. In 5th Conference on Automated Deduc-
tion, Lecture Notes in Computer Science, Springer Verlag, 1980, pp. 154-169.

15. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford

University Press, 1979.

16. R. Kowalski. Logic for Problem Solving. Elsevier North Holland, Inc., New York,

1979.

17. D. Loveland. Automated Theorem Proving: A Logical Basis. North Holland, Amster-

don, 1978.

18. J. McCarthy. A Basis for a Mathematical Theory of Computation. In Computer
Proframming and Formal Systems, P. Braffort and D. Hershberg, Eds., North-Holland

Publishing Company, Amsterd an, The Netherlands, 1963.

19. J. McCarthy, et eL. LISP 1.5 Programmer's Manual. The MIT Press, Cambridge,
Massachusetts, 1965.

S '

u 21

20. J S. Moore. "A Mechanical Proof of the Termination of Takeuchi's Function."

Information Processing Letters 9, 4 (1979), 176-181.

21. M. Smith, A. Siebert, B. DiVitto, and D. Good. "A Verified Encrypted Packet

Interface." SIGSOFT 6, 3 (1981).

22. United States of America Stand wds Institute. USA Standard FORTRAN. Tech.
Rept. USAS X3.9-1966, United States of America Standards Institute, 10 East 40th

Street, New York, New York 10016, 1966.

23. J. von Neumann. John von Neumann, Collected Works, Volume V. Pergamon Press,

Oxford, 1961.

S

S!

DISTRIBUTION LIST

Defense Documentation Center (12 copies) Office of Naval Research
Cameron Station Branch Office, Chicago
Alexandria, VA 22314 536 South Clark Street

Chicago, IL 60605
Naval Research Laboratory (6 copies)
Technical Information Division Office of Naval Research
Code 2627 Western Regional Office
Washington, D.C. 20375 1030 East Green Street

Pasadena, CA 91106
Office of Naval Research (2 copies)
Information Systems Program (437) Dr. A. L. Slafkosky
Arlington, VA 22217 Scientific Advisor

Commandant of the Marine Corps
Office of Naval Research Code RD-i
Code 200 Washington, D.C. 20380
Arlington, VA 22217

Naval Ocean Systems Center
Office of Naval Research Advanced Software Technology DiA*v.

Code 455 Code 5200
Arlington, VA 22217 San Diego, CA 92152

Office of Naval Research Mr. E. H. Gleissner
Code 458 Naval Ship Research
Arlington, VA 22217 & Development Center

Computation and Mathematics Dept.
Office of Naval Research Bethesda, MD 20084
Eastern/Central Regional Office
Bldg 114, Section D Captain Grace M. Hopper (008)
666 Summner Street Naval Data Automation Command
Boston, MA 02210 Washington Navy Yard

Building 166
Washington, D.C. 20374

